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Introduction

• In Nuclear Medicine, absorbed dose is 

calculated as an average dose to the target 

organ from the activity in the source organ, using 

a standard patient (the MIRD approach).

• Dose Point Kernels (DPKs) describe the dose as 

a function of distance for a given radionuclide 

and homogeneous phantom.

• In this work, we use the DPKs to calculate dose 

on a voxel basis in 3D, using the particular 

patient’s CT.



Calculation of the DPKs

• The DPKs were calculated using the 
GATE Monte Carlo toolkit, v6.1

– Papadimitroulas et al, Med. Phys. 39, 5238 
(2012); doi: 10.1118/1.4737096.

• Spherical geometry:

– Homogeneous medium (water, bone, lung, 
and soft tissue)

– Radionuclide at center

– Concentric shells for 3D dose calculation

– Smaller dose-scoring voxel sizes in inner 
shells for higher accuracy



Example: DPK for 99mTc
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Calculation of absorbed dose

• The path from the source voxel to the target voxel was 
calculated in 3D
– The path is a list of materials traversed and the distance in each 

material

• Using the DPK, the total energy absorbed in the first 
material, E1, was calculated.

• The position r2 in the second material where the total 
energy absorbed is equal to E1 was calculated.

• The DPK in the second material was read, beginning at r2.

• The total energy absorbed in the second material, E2, was 
calculated

• The position r3 in the third material where the total energy 
absorbed is equal to E1+E2 was calculated.

• The DPK in the third material was read, beginning at r3.

• The process was repeated until the target voxel



Case 1: Two-component phantom

• Spherical geometry, same as in 
calculating the DPKs

• Inner material is water (r ≤ 50.25 
mm), outer material is either bone 
or lung (50.25 < r ≤ 349.5 mm).

• Radionuclide is 99mTc
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Case 2: XCAT

• XCAT computational anthropomorphic 
model used to generate patient CT

• 100 slices, from top of head to diaphragm

• Slice dimensions are 128 x 128 pixels

• Voxel size is 3.54 x 3.54 x 3.54 mm3

• Radionuclide (99mTc) placed in different 
organs to assess effects of geometry and 
inhomogeneities.

• 1010 particles simulated for improved 
statistics



Case 2: XCAT

• Dose profiles 

in patient 

Left-Right 

direction

• Dose has 

been 

normalized so 

that Dmax of 

GATE profile 

= 100%



Conclusion

• An analytical algorithm for 3D voxel dose calculation, that 
is based on radionuclide dose point kernels, has been 
implemented

• Agreement with Monte Carlo is good in relatively 
homogeneous geometries, worse when inhomogeneities 
are present.

• This is due to known shortcomings of the DPKs:
– The DPKs have been calculated in homogeneous media

– Scatter (both radial and lateral) between different media is not 
accounted for

– Spectral changes in different media are not accounted for

– The DPKs have been calculated for a single type of “bone”, 
whereas GATE recognizes different types of bone, with different 
compositions, densities etc.


